
Essence numbers
and the

shape of G15 PMN

By Aristo Tacoma, May 7, 2019

A good deal of years ago, with the understanding
of essence numbers in place--in principle, but
without much of the far more eloquent expressions
and finely tuned concepts now at my disposal--
I was faced with the question: what now as for
computer programming languages? Where do these
come in?

Firstly, they seem to have a winning card on their
hand: they are clearly finite, and they don't
mess around with infinity proofs.

Secondly, they provide a sense of 'clean start',
for one who has been led into doubting most of
the foundations of mathematics--because of the
complicated entanglements with unclear ideas
about infinity that characterises most of
mathematics.

Thirdly, a programming language can be useful,
--such as in controlling robots--and such
usefulness adds to the interest in having such
a language.

I first launched a programming language called
Firth, borrowing something from Forth, and
developed this in several stages over some
years. What with one thing and another, I grew
dissatisfied with how much reliance it had on
a computer environment which contained vast
amounts of programming--such as the file
systems--and, worse, which seemed to have
a construction that seemed to be aimed at
hiding the limits, the finiteness. (Take, for
instance, the long lengths of the file names,

1

the multiple folders--indefinitely many--
that a folder of files can contain and the
often rather indefinite max sizes of files;
and the system for ordering these file
names and folders and for cleaning up unused
spaces--all presuming a big programming
language even before the first thing is done
in the programming language one is making.)

I could begin with a language that works
directly on chips, but the same thing is at
work there: the chips contain commercially
patented, undocumented circuits, in vast
quantities, even doing such things as
'simulating' what goes on in the program
that is supposedly 'running on' these
chips. The integrated circuits of early
21st century are as far as one can get from
a simple open finite idea of a core for a
programming language.

Then what? Make it of transistors? Or make
even the transistors? Looking into it
practically, it would take the capital of
a billionaire to raise the money to make
a practical working computer of the kind
that can run all normal business applications
and also control robots out of nothing but
chunks of silicone and iron and so on.
Nevertheless, I sketched the steps, and
came up with the 'interplates' concept in
so doing, and that's still on the planning
board but it will be done some day.

At some point, I took a decision: I will
accept one level of simulation--one level
only--in which the simplest chip possible
that can do the job is simulated by means
of the present chips we have. There will
be no 'file system', no vast bundles of
premade code--just some hundreds of very
simple 'instructions' that can be handled
with a moderate amount of the types of
components out of which one can construct
a CPU, a central processing unit, whether
by chips or something larger like intra-
plates (and preferrably that).

Taking a step back, eventually, after a

2

great deal of work on this, I brought pen
and paper to a beach and watched the waves
and wrote a little program in a language
that didn't yet exist--but which was to be
made on top of that CPU of mine. The PMN
on top of the G15.

And though I didn't put it in these words,
this is about how the language was
constructed:

We have looked at the set 1, 2 and 3, and
we have noticed the importance of such
whole numbers, and of arithmetic such as
addition. Well then, let us put these
numbers first in our language. Let us
use letters for the simple things we want
to do with them. One letter? Well, that
gives us only 26 or so alternative things.
Add a letter, we have 26x26 alternatives.
Let the second letter also be a number,
and perhaps even a sign like ?, and we have
still more alternatives. That seemed to me
to be much. Let us build bigger words out
of these simple words, three letters and
more.

Let the numbers, as the words, be put
vertically, in stacks--just as we had found
useful in our triangle argument which led
to the essence numbers. The point here
would be: we want to be able to see,
clearly, what is going on at every point.
So one number or two-letter thing or
three-letter thing at each line. Okay,
two columns then, so we make some more
use of the computer screen, and also can
see some relationship between the two
vertical columns. Eight lines of two
colums. That's what? A page? A little
too short to be called 'page'. Let us
call it 'card'. So that's it. Cards. No
files, just cards. No long lines, just
one thing on each line, as in classical
assembly language, but here it is really
simple stuff. How simple?

We want it to be practical, so not so
simple it is just small numbers up to a

3

thousand or a million. The natural levels
are given by 8 bits (hundreds), 16 bits
(tens of thousands), 32 bits (billions).
So, 32 bit it will be.

If we need data, we store it on cards;
when we need programs, we store them, as
said, on cards. So same kind of thing.
But a card read as text has more spaces
and such, a data card can be a more
cryptic thing, granted, as long as the
program easily can decode it and wrap
new content into it.

Every number is between 0 and about two
billion, the full 32-bit range is a bit
higher than two billion, and it can go
into the signed direction as well. Every
number has a reserved bit for the sign.
Keep it simple.

Every two-letter function has a number,
this number is what the two letters are
changed into. That number refers again
to the level underneath it, the G15
level. That is a 'direct action' number,
let's call it--as done in the previous
language experiments--for 'warp'. In
contrast to Forth, let this warp be a
32-bit number as a standard, transparent
thing. In Forth, which dealt with stacks
of numbers but without the estetics and
design of vertical columns, there was no
assertion about any standard of the size
of what they there called 'pointers'--it
was 16-bit, 32-bit or even more, and they
sought to generalize it,--to make it
deliberately unspecified. That is exactly
what we want to avoid. We want the finite-
ness of the language specified in as many
ways as possible, so as not to get into
any of the complications of assuming
'et cetera'.
 Some might say: some applications may
demand more than 32-bit, if they are going
to do such as simulate a big portion of
the world. Then we respond: we want the
programs to be simple and transparent and
open and human-readable and meaningful

4

and we want to keep all sorts of
simulations to a minimum. 32-bit it shall
be. No "artificial intelligence." Real
intelligence at work in the programmers,
and First-Hand work on Computerizing
whatever make sense of their Mentality--
FCM (see all my writings about FCM).

So whole numbers run the scheme. Each
two-letter function (or one-letter)
is converted to a whole number, a warp,
that is what the underlaying level, G15,
requires as active information to perform
that operation--such as AD for addition.
Then three-or-longer (not very much
longer, just some thirteen or fourteen
letters or so) words are made out of
numbers and two-letter words and such
simple constructs. These too get a
number, a warp. So a three-letter
function can, by having a place to
store a warp, run any function not just
a pre-programmed function--any function,
that is, which exists within the active
part of the maximum 32-bit memory or
RAM area.

So, for example,

COUNTUP=
LL:3
I1
NN
LO.

(Written with lowercase on the computer.)
When typing in COUNTUP, it will show
1
2
3
Now let's look at this program. The = sign
says: the word just before is a new one, in
this context. Then comes the loop control,
LL, with the number 3--that could be much
higher, within the two billion range--and
inside the LL is I1, get the number of the
count, and NN, put it to the screen, then
LO is the lower part of the loop, ie, the
loop is done at this point. Then dot . to

5

tell: this is the entire definition.

So, in writing 1, 2, and 3, with the idea
of adding 1, we are doing something like
an algorithm. In then writing 1, 2, 3, ...
we are saying: let's make this into a
percept and just look at it and through
it and see what we perceive. And, lo and
behold, we perceive essence numbers. Or
an essence number. (Look at article
written just before this introducing the
idea of 'percept'.)

Let's look at
COUNTUP=
LL:3
I1
2
MM
NN
LO.

Here we put in '2' and then 'mm' which means
'multiply'. So we get 2, 4, 6. (We could get
this in another way eg by shifting a bit
to the right, but clarity is important here.)
As we argued in some previous articles, there
is a different sense what we perceive through
this percept. We have a different essence
number.

So, yes, let us proceed to this point: we
have whole numbers, very simple operations
on them, and ways to group these operations
on them, and some more such. And by this,
shaped with as little as possible in terms
of preconceived ideas about any surrounding
technological environment, we get a possibility
of running finite programs that works with
finite things while at the same time having
a calm perception of what is going on. We
can look at the program, enjoy its elegance,
the lack of presumption in its simple signs,
the freedom from pompous statements about
infinity in the context, and see something
which is not simply the same as looking at
individual whole numbers. We are looking at
algorithms, we can say: but algorithms that
are also leading us--when written as

6

elegantly as can be, in this maximum elegant
language G15 PMN--to have percepts in our
minds, percepts with which we can perceive.
What we perceive refers to this world of
abstract forms we talked about in connection
to semantic mathematics. We noted that this
is a 'nonstatic' set of forms. In some cases
we spoke of them in musical terms.

The level underneath this elegant simple
level must be an even more simple level
in terms of technological requirements for
how to put it together. It is not easy to
put together something that can handle any
set of numbers like that. It is easier to
put logical gates or transistors or what we
call them together so as to handle just a
handful of numbers at a time. So I spent
time shaping some short words, each
corresponding to an instruction number
from 1 and upwards to what eventually became
two-three hundred--whose only function was
to do something with a handful of numbers,
such as arithmetic, or putting it to a
screen or getting them from a keyboard
or a mouse or from an external storage
device like a disk or from the fast
internal storage called RAM. Each number
32 bit, each signed, no simulation, no
big deal of variation.

G15 having been made, instead of making
PMN once and for all, PMN was made into
a G15 program that compiles during start-
up, so that it can easily be extended
with a few more two-letter words dedicated
to a particular task when speed or
connection to a new physical device
demanded so extra G15 work. In compiling
it each time during start-up, it would be
easy to be certain, in each case, of
exactly what it is that is being performed,
and how, rather than having concealed
and closed layers that do something
mysterious with a program that is in
other senses open.

In deciding to put trigonometric functions
of a whole-number kind into this, a set of

7

precalculated whole numbers was put into
the RAM so that PMN functions could, with
a definite limit to the resolution, shape
circles and calculate angles back and
forth and also square roots. This matched
the sense of this approach being first-hand
and not oriented towards simulation nor
incorporating such routines as imply
'indefinite' resolution towards the
'infinitesimal error' with all the lack
of clear ideas in the foundations of those
concepts. True, it would put a limit to
how much simulation can be done without
going to great lengths in making new
algorithms giving extra decimal digits,
but after all that was part of the plan.
We make that which is first-hand easy,
and other things can be implemented when
one has to for practical reasons, later.

To control robots, the FCM concept is
then not about making a network of
programs 'self-organizing' in any way:
rather, it is about making several
levels of a network pre-programmed
so as to implement something of what
the programmer has as his or her
mentality relative to a certain type
of task. This can also include some
degree of what can be called
'entrainment'--without using the
organic word 'learning' or any such
pompous, nonsensical phrase like
'artificial intelligence' in any
context. This network is defined by
means of a matrix of a concrete,
limited set of optional variables,
to which some algorithms can be
attached so that the network can be
described as 'doing' something: but
the robot is never 'on its own', but
rather is in the control of a certain
type of first-hand PMN program, even
if it has some fuzziness in how
something is to be done without
definite boundaries, in definite
contexts, and with definite
criterions for what and when it is
right for the robot to do anything

8

at all (which the programmer can think
of as 'ethical priorities', but which
are given an operational description
in terms of pattern matching and
scoring and such).

After groundwork for robot programming
was made, but even more when the
core group of simple 2D-without-simulation
'space invader shooting'-like games were
made--to wrap up the bundle of applications
which included text processing and image
editing and such--the PMN had 'come of
age'. Finally it was, as it now is,
possible to lean back and ask the big
philosophical questions and also the
concrete mathematical questions. Each
PMN function--we can now say, using our
mature, sophisticated language--when
written as elegantly as can be, doing
something concrete, and lovely, is also
possible to read as a percept. And
through this percept we can have a
perception into what it refers to--
what essence it refers to (or essence
number, but perhaps it is more clear
to drop the word 'number' at this
point).

Let us go again briefly to the idea of
platonic abstract forms, even if we
allow them to have movement, as we
earlier said. Where do they come from?
Are they just there?

This takes us into the worldview
discussion. It is hard to say anything
at all as answer to this without
presuming much about worldview including
metaphysics.

But if we admit to the notion, as this
author does, that human consciousness is
a light that can connect to some light
beyond itself, and beyond even matter,
then the perception is of something real,
and when we have good percepts--and I
believe the G15 PMN are as elegant and
as good for this as can be--we will

9

perceive readily.

By analogy to 1, 2, 3 to which we add
"et cetera"--the first part being as
it were an 'algorithm', the second
part being the perception of what it
points to, in the subtle world of
forms--every clear, elegant, simple
program can be perceived to have
something associated with itself,
something perhaps beautiful, perhaps
very beautiful. Let us not ask at the
moment 'where' this subtle world is,
or what 'dimension' it exists on, or
'who' underlies it, or 'what' or 'who'
helps maintaining it, but let's rather
try and get hold of an idea, even if
entirely a poetic and metaphysical
idea, of how such a subtle world
arises in the first place.

I have asked this of myself and the
answer that feels right to say is
this: by means of a playful analogue
sort of computer that looks at the
digital algorithm (what I a very
long time ago called 'the Uncomputer',
but it is a concept I didn't feel
like using because it felt too
omnious). A playful analogue
computer, without the types of
limits that a digital computer has,
--playful signifying that it is
going beyond all known mechanical
constraints altogether, in a lively
and musical way--LOOKS at an algorithm
and it is the very process of looking,
by this playful analogue computer,
that gives rise to the subtle form
we can perceive by means of the
percept of the elegantly written
PMN program.

We are far out into the realm of
that which to an atheist is pure
nonsense, or worse, insane nonsense,
and so we might as well go a step
further in this article, just one
step, and we have completed the

10

metaphysical excursions into the
deeper meaning of G15 PMN algorithms.

I submit, as an intuition, that some
of the most beautiful, simple programs,
involving, for instance, the Fibonacci
numbers, are percepts of a kind through
which we perceive quintessential human
beauty, but of a kind that goes beyond
what a human can have. In a word, these
percepts allow us to perceive something
beyond the human realm altogether,
something, someone--and my intuition is
to bring in here the word 'muses' (and
see my writings at other places as for
why I feel that the modern word 'muse'
in the English language indeed is an
appropriate one for such a lofty use).

And this, my dear reader, explains how
these articles can be written in between
bouts of intense work also as a fashion
and beauty photographer and fashion and
beauty magazine editor: it is one and
the same theme, speaking in terms of
essences.

In lighter language, something of this
is re-presented in the second volume of
the Art of Thinking series, G15 PMN
Programming for Teens, which will also
treat the theme sex. I have already
written the first volume, G15 PMN
Programming for Kids. The third volume
will discuss the core of the robotic
programming approach in the sense of
an overview. The fourth and fifth volume
are both more philosophical and more
scientific, but also, in a psychological
sense, rather practical.

11

